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Fig, 4. Comparison of normalized surface resistance data with theory.

the data points were obtained by assuming an error of 1.7% in

the Szl measurements. This error is due to the return loss of the

coaxial to waveguide transitions, which is neglected in the

impedance extraction method. A VS WR of 1.3 in the transitions

will cause an error of 1.7% in S21 measurements.

IV. CONCLUSIONS

This paper reports a novel technique formeasunng the resis-

tiveproperties ofhigh-temperature superconductors. It utilizes an

anaJysis developed by Eisenhart for a two-gap, electrically iso-

lated resonant strip in waveguide. Results of normalized surface

resistance measurements show good agreement with a modified

form of the Mattis–Bardeen extension of the Bardeen, Cooper,

Schneffer theory of superconductivity.
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Modal Analysis of Open Groove WaveWide

SAMIR F. MAHMOUD, SENIORMEMBER.IEEE

Abstract —A self-contained analysis for lower order modes in the open

groove waveguide is presented. By adopting an approximate form for the

fields in the outer region of the guide and then performing the remainder

of the analysis rigorously, closed-form results for the fields and modaf

equation are obtained. The analysis aflwvs a simple transverse network

representation which can be compared with that obtained by Oliner and

Lampariello. Universal dispersion curves, obtained numerically for the

dominant mode, are presented.

I. INTRODUCTION

The open groove guide has long been recognized as a low-loss

waveguide which is most suitable for millimeter-wave circuits

[1]-[5]. The low loss property is attributed to the absence of any

dielectric material and to the low conductor losses, a condition

which stems from the electric field knes of the dominant mode

being parallel to the guide walls. Referring to Fig. l(a), the

electric field of the dominant mode is mainly parallel to the

sidewalls. It is oscillatory in the inner region, ]yl < b/2, and

decaying in the outer regions, 1y 1> 1)/2. Because of the Junction

discontinuity at y = ~ b/2, a rigorous analysis of modes reqpires

an expansion of the fields in terms of transverse modes in both

the inner and outer regions. The process is lengthy [4] and the

mathematical complexity will obscure any physical insight into

the mode behavior. On the other hand, simple approximate

solutions based on a single transverse mode field representation

in each region (e.g. [1], [3]) will not have sufficient accuracy.

More recently Oliner and Lampariello [6] have presented a sim-

ple and yet accurate solution based on an equivalent transverse

network, taking into account the effect of higher order modes

generated at the junction planes y = + b/2. Thus, the inner

region is represented by a transmission line (Fig. l(b)) connected

through a step transformer to another line which represents the

outer region. The effect of the higher order transverse mocles is

lumped into a susceptance B. By adopting results from [7], Oliner

et al. [6] have deduced a useful formula for the susceptance B.

They verify their results by comparing them with previous experi-

mental data obtained by Nakahara and Kurauchi [1] and report

favorable comparisons.
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(a) (b)

Fig. 1 The open groove guide (a) Geometry. (b) Transverse equivalent

network for even modes.

In the present paper, we try to give a rather self-contained

formulation to the lowest order modes of the groove guide. A

simplifying assumption is adopted at the outset of the analysis

whereby a simple field distribution is assumed in the outer

regions. Apart from this assumption, the rest of the analysis is

quite rigorous and leads to a simple modal equation, The latter

can be interpreted in terms of a transverse network representa-

tion whose parameters are expressed in closed form.

II. ANALYSIS

Since the groove guide is homogeneously filled, the basic

modes are either TE or TM to z (Fig. l(a)). The dominant mode

is the TEI (I mode, resembling the same mode in a closed rectan-

gular waveguide. So, in the following we consider TEI,, modes.

The region Iy I > b/2 is assumed to be sufficiently long, so that

all fields decay to negligible values before reaching the open end.

For TE1,, modes all fields are expressible in terms of the h= field

component while e, = O.

Apart from a common field dependence exp (iuf – i~z) we

start by approximating the field in the grooved region 1yl > b/2

by

h,= sin(~x/a’) exp( - a([yl - b/2)) (1)

while in the central region, I-Y I < b/2, a generaf field expression is

used:

h= = ~ ,4,,, sin[(2m +l)nx/a] cosk,,mly (2)
W1=O

where only even modes about y = O are considered and

kffl, +[(2rn +l)m/a]2= (n-/a’)2-a2 =k~ –/3z. (3)

Both (1) and (2) satisfy the wave equation and the boundary

conditions at the sidewalls. Thus it remains to satisfy the continu-

ity of h=, e,, and h, at the plane y = b/2. These three boundary

conditions reduce to two since the continuity of h, at all values

of x implies the continuity of h ~, which is proportional to

C9h:/dx. Therefore, it is sufficient to apply the boundary condi-

tions to h. and e, only.

Continuity of h= reads

~ A,,, sin[(2wt +1) wx/a] COS(kYtilb/2) = sin(nx/a’)
~=o

for 1x1< a’/2 (4)

and continuity of eX reads

~ kYmAM sin[(2m +1) ~x/a] sin( kYMb/2)
~=o

= asin(7rx/a’) . . . for 1x1 < a’/2

=0 for a/2 > 1x1> a’/2. (5)

Thus while the electric field eY is defined over the entire intervaf

(– a/2, a\2), the magnetic field h, is defined only in the range

(– a’/2, a’/2) and M unknown outside. It is then appropriate to

try to expand h, in terms of a complete set of functions inside

the region ( – a’/2, a’/2). We choose the set of functions

sin[(2n + 1) wx/a’], n = 0,1, ... for this purpose. On the other

hand eY is expanded in terms of the set of functions sin [(2n +

1) nx/a ] with range ( – a/2, a/2). To implement these ideas,

multiply (4) by sin [(2n +1) nx/a’] and integrate between the

limits – a’/2 and a’/2:

~ ,4~lc,,,,, COS( k),,lb/2) = ( a’/2) 8,,, (6)
~=(’

where 8,,0 = O for n + O and = 1 for n = O, and

cPPlII = J
““2 sin[(2m +l)7fx/a] sin[(2n +l)nx/a’] a’x. (7)
– a’/~

Similarly, multiply (5) by sin [(2 n + 1)rx/a] and integrate over

the range (– a/2, u/2):

A,l k,,, ( a/2) sin ( k,,,, b/2) = c,lOa. (8)

Substituting for Am, in (6) from (8) and putting n = O in the

former equation, it becomes

~~o(cno)2cot(k,,,,b/ 2)/kr,,l = ( a’a/4a). (9)

This is the modaf equation for the TEI,Z modes, since the only

unknown in the equation is /?. This can be written in a form that

allows a transverse circuit representation as follows:

– i~ocot ( kpob/2) – iyo f ( cmzo/coo)2cot( k,n, b/2) k,o/k, fi,
rlz=l

+ ~/n;= o. (lo)

The first term in this equation is the input admittance of a

short-circuited transmission line of length b/2 and characteristic

admittance Y. = constant K/k PO, representing the central region.

The third term, representing the grooved region, is the reflected

admittance of an infinite line of characteristic admittance Y. =

K/( – ia) = iK/a through a step-up transformer of turns ratio n,

(see Fig. l(b)). Finally the second term is a shunt admittance= ill

that accounts for the higher order modes generated at the junc-

tion y = b/2. By comparing (9) with (10), we get

3‘2c;:;:;:;) (11)n, = 2coo/(aa’)1’2 = (4/n) (a’a)

where (7) has been utilized to get coo. Finally, the summation

term in (9) accounts for higher order modes and is equal to

– B/ Y., which is obviously dependent on the modaf phase

constant ~ through the factor k,,,,. However in a practicaf case

and for low-order modes, it is appropriate to approximate k,,.,,

m >1, by (see (3))

k,n, = [k: –~’ -(2wz+l)2n’/a’]l” =Z(2nz+l) n/a.
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Fig 2. Plots of ( B/yO)/kYOcr Curve 1: eq. (13). Curve 2: eq. (14) (from [6]).

This renders B/ YO independent of /3. Therefore

~/yo=(~yoa) ii (Cmo/Cw)2
m=l

coth[(2nr +l)nb/2a]/(2m +1) r (12)

and is dependent only on the geomet~.

The coth [. ] term in this expression accounts for the coupling

between evanescent fields at the two junctions y = & b/2. When-

ever b is sufficiently large, (12) is further simplified by setting the

coth [ - ] term equal to unity. This requires that 3nb/a >4, say, or

b/a >0.42. Under this condition,

(B/~) = (k, oa) f (c,,, o/coo) ’/(2nz+l)n

m (l-a’’/a’)’ cos’ [(2m+l)7ra’/2a] (2m+l)/7r
=(k,oa) ~

J77=l [1-(2 m+l)’a’2/a’]2cos2 (7ra’/2a) ~

(13)

Now, this can be compared with the expression obtained by

Oliner et al. [6] for the same quantity; namely B/Y. in [6] is

expressed by

B/~j = (k,~a) “0.55(2/~) cot2 (~a’/2a). (14)

Finally, the modal equation (10) can be recast in the simpler

form

cot(k, ob/2) – B/Y. –(kro/~)/n; =0 (15)

where B is given by (13), n, by (11), and a is related to kvo by

(3).

III. NUMERICAL WSULTS

First we compare expressions (13) and (14) for B/ Yo. To do so,

we compute the quantity (B/Y. )/( ,fcYoa ), which is a function of

(a’/a) only, using both equations. This is plotted in Fig. 2 and it

is clear that the two expressions are very close to each other,

although each is obtained by different means. Next, we solve the

modal equation (15) in terms of u = kYo b/2 and plot this for the

dominant mode (lowest u) versus ( a’/a ) for b/a= 1/2 and 1 in

Fig. 3. The cutoff wavenumber kC is obtained from (3) by setting

/3= O; namely k: = (2u/b)2 +(~/a)2.

1 I

Fig. 3. Elgenvalue u = k,0 b/2 for the dcminant mode versus ( a ‘/c~ ) for

b/u = 1/2 and 1.

IV. CONCLUSIONS

We have tried to present a self-contained analysis for the lower

order modes in the open groove waveguide based on a simplify-

ing assumption used right at the outset. Thus, the modal equation

(10) has been derived for the TE1,I modes by adopting a simple

field variation in the groove region. The modal equation (10) is

interpreted in terms of the transverse network suggested by

Oliner et al. [6], and shown in Fig. l(b), where the Junction

susceptibility B is generally dependent on the longitudinal phase

constant /3 and the geometrical factors a, ( a’/a), and b/a.

However, for the lower order modes, B can be considered

independent of (?, and is then given by (12). The dependence of B

on the ratio (b/a) reflects the coupling between the evanescent

transverse modes at the two juncticns y = + b/2. It has been

shown, however, that if b/a >0.42 tlhe dependence on this ratio

becomes very weak. The reduced expression (13) for B is then

shown to agree numerically with that derived by Oliner et al. [6].

The modal equation (10) or (15) is believed to provide a simple

and accurate means of characterizing the dominant mode, and

perhaps the next few low order mocles of the TE1,, type in~ the

open groove guide. A bonus of the present analysis is the p revi-

sion of a simple expression for the modal fields, which are given

by (1) and (2), with Am given explicit Iy by (8). Thus it is a simple

exercise to compute the power flow and the conductor losses for

the modes of interest.
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