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Fig. 4. Comparnson of normalized surface resistance data with theory.

the data points were obtained by assuming an error of 1.7% in
the S,; measurements. This error is due to the return loss of the
coaxial to waveguide transitions, which is neglected in the
impedance extraction method. A VSWR of 1.3 in the transitions
will cause an error of 1.7% in §,, measurements.

IV. CoNcLusiONS

This paper reports a novel technique for measuring the resis-
tive properties of high-temperature superconductors. It utilizes an
analysis developed by Eisenhart for a two-gap, electrically iso-
lated resonant strip in waveguide. Results of normalized surface
resistance measurements show good agreement with a modified
form of the Mattis—Bardeen extension of the Bardeen, Cooper,
Schrieffer theory of superconductivity.
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Modal Analysis of Open Groove Waveguide

SAMIR F. MAHMOUD, SENIOR MEMBER. IEEE

Abstract —A self-contained analysis for lower order modes in the open
groove waveguide is presented. By adopting an approximate form for the
fields in the outer region of the guide and then performing the remainder
of the analysis rigorously, closed-form results for the fields and modal
equation are obtained. The analysis allows a simple transverse network
representation which can be compared with that obtained by Oliner and
Lampariello. Universal dispersion curves, obtained numerically for the
dominant mode, are presented.

I. INTRODUCTION

The open groove guide has long been recognized as a low-loss
waveguide which is most suitable for millimeter-wave circuits
[1}-[5]. The low loss property is attributed to the absence of any
dielectric material and to the low conductor losses, a condition
which stems from the electric field lines of the dominant mode
being parallel to the guide walls. Referring to Fig. 1(a), the
electric field of the dominant mode is mainly parallel to the
sidewalls. It is oscillatory in the inner region, |y|<b/2, and
decaying in the outer regions, |y|> b/2. Because of the junction
discontinuity at y = 4 b/2, a rigorous analysis of modes requires
an expansion of the fields in terms of transverse modes in both
the inner and outer regions. The process is lengthy [4] and the
mathematical complexity will obscure any physical insight into
the mode behavior. On the other hand, simple approximate
solutions based on a single transverse mode field representation
in each region (e.g. [11, [3]) will not have sufficient accuracy.
More recently Oliner and Lampariello [6] have presented a sim-
ple and yet accurate solution based on an equivalent transverse
network, taking into account the effect of higher order modes
generated at the junction planes y= 4 b/2. Thus, the inner
region is represented by a transmission line (Fig. 1(b)) connected
through a step transformer to another line which represents the
outer region. The effect of the higher order transverse modes is
lumped into a susceptance B. By adopting results from {7], Oliner
et al. [6] have deduced a useful formula for the susceptance B.
They verify their results by comparing them with previous experi-
mental data obtained by Nakahara and Kurauchi [1] and report
favorable comparisons.
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Fig. 1 The open groove guide (a) Geometry. (b) Transverse equivalent

network for even modes.

In the present paper, we try to give a rather self-contained
formulation to the lowest order modes of the groove guide. A
simplifying assumption is adopted at the outset of the analysis
whereby a simple field distribution is assumed in the outer
regions. Apart from this assumption, the rest of the analysis is
quite rigorous and leads to a simple modal equation, The latter
can be interpreted in terms of a transverse network representa-
tion whose parameters are expressed in closed form.

II. ANALYSIS

Since the groove guide is homogeneously filled, the basic
modes are either TE or TM to z (Fig. 1(a)). The dominant mode
is the TE,, mode, resembling the same mode in a closed rectan-
gular waveguide. So, in the following we consider TE,, modes.
The region |y| > b/2 is assumed to be sufficiently long, so that
all fields decay to negligible values before reaching the open end.
For TE,, modes all fields are expressible in terms of the /_ field
component while e. = 0.

Apart from a common field dependence exp(iwt—ifz) we
start by approximating the field in the grooved region |y|> b/2

by
h.=sin(7x/a’)exp(— a(|y|—b/2)) (1)

while in the central region, | y| < b/2, a general field expression is
used:

h.= Y A,sin[(2m+1)mx/a]cosk,, y (2)

m=0

where only even modes about y =0 are considered and
K, +[2m+)a/al =(n/a) - =ki-B>  (3)

Both (1) and (2) satisfy the wave equation and the boundary
conditions at the sidewalls. Thus it remains to satisfy the continu-
ity of h_, e, and A, at the plane y = b/2. These three boundary
conditions reduce to two since the continuity of /4. at all values
of x implies the continuity of 4., which is proportional to
dh, /dx. Therefore, it is sufficient to apply the boundary condi-
tions to . and e, only.
Continuity of 4_ reads

f A, sin[(2m +1) 7x /a] cos( k,,,b/2) =sin(mx/a’)
m=0

for [x|<a’/2 (4)
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and continuity of ¢, reads
- .
Y kypAysin[(2m+1) 7x/a]sin( k,,b/2)
m=0
=asin(#x/a’) - -
=0

for |x|<a’/2
fora/22|x|>a’ /2. (5)

Thus while the electric field e, is defined over the entire interval
(—a/2,a/2), the magnetic field 4. is defined only in the range
(—a’/2,a’/2) and 1s unknown outside. It is then appropriate to
try to expand /. in terms of a complete set of functions inside
the region (—a’'/2,a’/2). We choose the set of functions
sinfCn+1)wx/a’l, n=0,1,--- for this purpose. On the other
hand e is expanded in terms of the set of functions sin[(2n +
V)mx/a] with range (—a/2,a/2). To implement these ideas,
multiply (4) by sin[(2rn+1)7x/a’] and integrate between the
limits —a’/2 and a’/2:

>}
Z An’lCI‘H/I Cos(k\/'flb/z) = (a,/z) SHU (6)
m=40
where 8,,=0 for n # 0 and =1 for n=0, and
eon=[""% sin[(2m+1) mx/a]sin[(2n +1) 7x /a’] dx. (7)
—a'/2

Similarly, multiply (5) by sin[(2xn +1)7x /a] and integrate over
the range (— a/2,a/2):

Ak, (a/2)sin(k,,b/2) = ¢, 0. (8)

Substituting for A4,, in (6) from (8) and putting n=0 in the
former equation, it becomes

i (CmO)zCOt(kl’mb/z)/kvm = (ala/4a)' (9)
m=0

This is the modal equation for the TE,, modes, since the only
unknown in the equation is 8. This can be written in a form that
allows a transverse circuit representation as follows:

—I)IOCOt(k}Ob/z) - IYE) Z (CmO/COO)2COt(kwnb/z)kr()/kvm

m=1
+Y)/n2=0. (10)

The first term in this equation is the input admittance of a
short-circuited transmission line of length b /2 and characteristic
admittance ¥, = constant K /k , representing the central region.
The third term, representing the grooved region, is the reflected
admittance of an infinite line of characteristic admittance ¥, =
K/(—ia) =iK /a through a step-up transformer of turns ratio »,
(see Fig. 1(b)). Finally the second term is a shunt admittance = iB
that accounts for the higher order modes generated at the junc-
tion y=b/2. By comparing (9) with (10), we get

cos(ma’/2a)

1-(a’/a)’

where (7) has been utilized to get ¢,,. Finally, the summation
term in (9) accounts for higher order modes and is equal to
— B/Y,, which is obviously dependent on the modal phase
constant 8 through the factor k,,. However in a practical case

and for low-order modes, it is appropriate to approximate k
m =1, by (see (3)

"r=2coo/(aal)l/2=(4/7r)(a’a)3’/2 (11)

yms

k= k2= B2 = (m+1)27%/a?]" =1(2m +1)n/a.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 4, APRIL 1990

3
1v

-] 1

[o} S

Il K
M vy
~ N
- I

0 “‘-
> @
~ th
m "
- o

! RN
T,
11';_1_:___
%h-hﬁm__m,.
1 T T {‘
) i b l
E
Fig 2.

Plots of (B/y,)/k,oa Curve I: eq. (13). Curve 2: eq. (14) (from [6]).
This renders B/Y, independent of 8. Therefore
o 2
B/ Yo = (ky0a) X (no/c00)
m=1

-coth[(2m +1)7b/2al/(2m+1) 7w (12)

and is dependent only on the geometry.

The coth[-] term in this expression accounts for the coupling
between evanescent fields at the two junctions y = + b /2. When-
ever b is sufficiently large, (12) is further simplified by setting the
coth[-] term equal to unity. This requires that 37b/a > 4, say, or
b/a > 0.42. Under this condition,

(B/Y;)) = (k|()a) Z (CIIIO/COO)Z/(2m+1)W
m=1

o (1-a?/a?)’ cos? [(2m+1) 7a’/2a)(2m+1) /=
[l—(2m—I—l)za’z/az]zcosz(vra’/Za) .
(13)

Now, this can be compared with the expression obtained by
Oliner et al. [6] for the same quantity; namely B/Y, in [6] is
expressed by

=(k10a)

m=1

B/Y,=(ka)-0.55(2/7)cot*(ma’/2a). (14)
Finally, the modal equation (10) can be recast in the simpler
form

cot(k,ob/2)— B/Yy—(k,o/a)/n? = (15)

where B is given by (13), n, by (11), and « is related to k , by
A3).

III. NUMERICAL RESULTS

First we compare expressions (13) and (14) for B/ Y. To do so,
we compute the quantity (B/Y;)/(k ga), which is a function of
(a’ /a) only, using both equations. This is plotted in Fig. 2 and it
is clear that the two expressions are very close to each other,
although each is obtained by different means. Next, we solve the
modal equation (15) in terms of u =k ,b/2 and plot this for the
dominant mode (lowest ) versus (a’/a) for b/a=1/2 and 1 in
Fig. 3. The cutoff wavenumber k, is obtained from (3) by setting
B =0; namely k2 = Qu/b)? +(7/a)>.
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Fig. 3. Eigenvalue u=k ob/2 for the dominant mode versus (a’/a) for

b/a=1/2and 1.

IV. CONCLUSIONS

We have tried to present a self-contained analysis for the lower
order modes in the open groove waveguide based on a simplify-
ing assumption used right at the outset. Thus, the modal equation
(10) has been derived for the TE;, modes by adopting a simple
field variation in the groove region. The modal equation (10) is
interpreted in terms of the transverse network suggested by
Oliner et al. [6], and shown in Fig. 1(b), where the junction
susceptibility B is generally dependent on the longitudinal phase
constant B and the geometrical factors a, (a’/a), and b/a.
However, for the lower order modes, B can be considered
independent of 8, and is then given by (12). The dependence of B
on the ratio (b/a) reflects the coupling between the evanescent
transverse modes at the two juncticns y= 4 b/2. It has been
shown, however, that if b/a > 0.42 the dependence on this ratio
becomes very weak. The reduced expression (13) for B is then
shown to agree numerically with that derived by Oliner ez al. [6].
The modal equation (10) or (15) is believed to provide a simple
and accurate means of characterizing the dominant mode, and
perhaps the next few low order mocles of the TE,;, type in the
open groove guide. A bonus of the present analysis is the provi-
sion of a simple expression for the modal fields, which are given
by (1) and (2), with A4,, given explicitly by (8). Thus it is a simple
exercise to compute the power flow and the conductor losses for
the modes of interest. :
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